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a b s t r a c t

This paper proposes a new examplar-based method for real-time human motion recognition using
Motion Capture (MoCap) data. We have formalized streamed recognizable actions, coming from an online
MoCap engine, into a motion graph that is similar to an animation motion graph. This graph is used as an
automaton to recognize known actions as well as to add new ones. We have defined and used a spatio-
temporal metric for similarity measurements to achieve more accurate feedbacks on classification. The
proposed method has the advantage of being linear and incremental, making the recognition process very
fast and the addition of a new action straightforward. Furthermore, actions can be recognized with a
score even before they are fully completed. Thanks to the use of a skeleton-centric coordinate system,
our recognition method has become view-invariant. We have successfully tested our action recognition
method on both synthetic and real data. We have also compared our results with four state-of-the-art
methods using three well known datasets for human action recognition. In particular, the comparisons
have clearly shown the advantage of our method through better recognition rates.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction reduction method used before any learning or recognition stage.
Computer vision aims at being used in our every day life by pro-
viding solutions in areas such as entertainment (Freeman et al.,
1996), medical applications (Perini et al., 2006) or intelligent
video-surveillance (Kilambi et al., 2006), just to name a few. One
particular and futuristic application of computer vision is to achieve
a Human–Computer Interaction (HCI) (Okwechime et al., 2011;
Raptis et al., 2011) of the same level as the human–human one.
Ideally, humans will be able to interact with computers as if they
were interacting with other humans.

In this work, we are proposing a twofold contribution. First, we
significantly reduce the MoCap raw data with linear regressions,
both incrementally and online, so that we can provide a compari-
son space for human motion. Second, we classify and enrich a
graph-based automaton of actions where, recurrent motifs and
critical transitions are highlighted. As a consequence, we have pro-
posed a new framework to use MoCap data for interaction with a
computer in a much richer way. Note that the MoCap data we
are referring to could come from any source as long as it consists
of a set of spatio-temporal 3D points representing some important
features on the human body. These MoCap points usually represent
the extracted skeleton joints.

This paper is organized as follows. The next section presents a
selection of previous works. Section 3 presents the MoCap data
ll rights reserved.
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Section 4 introduces our spatio-temporal metric for comparing
and matching actions. Section 5 describes the graph-based autom-
aton for our online recognition and learning processes. Experi-
ments on synthetic and real data are presented in Section 6 and
a conclusion is provided in Section 7.
2. Previous works

We have divide this section into three parts. The first deals with
Human Computer Interaction, the second concerns the use of
human body to identify activities, and the third relates to some
works coming from computer animation.

2.1. Human Computer Interaction

Although many researchers have proposed new solutions to im-
prove Human–Computer Interaction, most of them are still sim-
plistic as they were usually limited to a small number of basic
interactions. In early solutions, markers were used to ease the
tracking/matching problem. The work by Zhang et al. (2001) was
among the first to propose a computer vision-based solution to
interact with a computer. They have used an ordinary piece of
paper as a marker and they were able to point, click, draw and turn.
Their main drawback was the use of a simple marker that has lim-
ited the number of recognizable actions. Van den Bergh et al.
(2005) proposed a generic approach to remotely interact with a
computer by detecting the fingers of one hand and localizing the
eyes. In theory, they can use all fingers of one hand together with
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a single finger from the other hand to control a pointing device
with several options. This solution can only be used in front of
large projected screen and it is not user-friendly for standard inter-
actions. Argyros and Lourakis (2006) detect and use the fingers
configuration to control the mouse move and click actions. This
markerless solution is a step forward in HCI as it is based on the
bare human hand. However, it is limited to the mouse move and
click actions and does not exploit the much richer gesture possibil-
ities. Using two cameras, Li et al. (2007) have proposed a vision-
based system to simulate touch screen devices. They suffer from
similar drawbacks of other previous methods as they only propose
touch screen interactions, which is limited in term of interpreta-
tion. Going beyond simplistic HCI, Okada and Stenger (2008) have
presented a framework, using silhouettes, to build a shape hierar-
chy tree. They capture motion at the same time as they use it in a
virtual environment where, the user can interact through his/her
avatar. Because of the inter-silhouette dependency, they had to
use 30 human models to produce a set for all recognizable config-
urations. They build their tree in a batch process and a Cell Broad-
band Engine™ was required to evaluate the tree, which is far from
real time on a typical computer. Although their work is among the
first ones to use the potential of full body MoCap to interact with
computers, the proposed method is cpu-time consuming and not
flexible enough as it requires the presence of very similar actions
in the tree. Okwechime et al. (2011) have proposed a framework
to synthesize motion from a user input. Their works is closed to
action recognition as they have to segment and recognize motion
to find transitions. In particular, they are more synthesis oriented
in their interaction scheme.
2.2. Human body analysis

Fujiyoshi and Lipton (1998) have performed skeletonization of
the body contour to identify walking, running and even gait anal-
ysis. Their work is among the first ones to perform human body
skeletonization to identify human action. The solution has the
advantage of being easy to use but it is mainly useful for simple
interpretations. Bobick and Davis (2001) have proposed a method
using spatio-temporal templates for human activity recognition.
Their method runs in real-time and uses a database of actions they
have previously extracted. Although their recognition process is
real-time, adding new actions to their database is time consuming
and not very flexible. Working with silhouettes for action recogni-
tion, Elgammal et al. (2003) used the exemplar paradigm with
Hidden Markov Model. This solution has the advantage of being
flexible and time efficient. However, it is limited by the 2D
primitives, extracted from the video stream. Parameswaran and
Chellappa (2003) use MoCap with markers in an invariant motion
space. As mentioned by the authors, there is no 3D invariance in
motion space, and therefore all actions have to be described
independently. To achieve view independence, it is necessary, in
most cases, to work in the 3D space and to use an animation
skeleton. Huang and Trivedi (2005) have presented the concept
of a cylindrical histogram, in a voxel-based representation, to per-
form recognition using Hidden Markov Chains. In the proposed
method by Weinland et al. (2007) exemplars are used to learn
view-independent actions of human with hidden Markov chains.
The reconstruction process was not required as they performed
recognition in 2D space, without prior knowledge of the cameras’
positions. Xiong and Liu (2007) have also used Hidden Markov
Model on extracted silhouettes, but their target was limited to sim-
ple human behaviors. In the work by Lv and Nevatia (2007), actions
were modeled as sets of virtual key-poses to be used in the
matching process. This method is however limited by the high
computation cost and by the number of available virtual key poses.
Please cite this article in press as: Barnachon, M., et al. A real-time system for m
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In 2008, Cuntoor et al. (2008) have suggested that trajectories
provide the most discriminative solution to understand human
behavior. Hence, more and more recent research works are using
trajectories for action recognition. Li and Fukui (2008) have
proposed a trajectory-based solution where, variations and 2D pro-
jections were generated through camera motion only. The experi-
ments presented in their paper were not extensive enough to draw
a strong conclusion based on their results. The work by Yilmaz and
Shah (2008) is another silhouette-based method where, a 2D
spatio-temporal silhouette curve is transformed into a three-
dimensional spatio-temporal volume. They detect feature (impor-
tant) points in these curves then, with a bipartite graph, these fea-
tures are used to categorize actions. Unfortunately, temporal
correspondence, used for feature points, together with extensive
calculations produce a lengthy silhouette volume that is prone to
errors. Baak et al. (2009) create motion priors base to ensure that
certain constraint dependencies are in agreement with the behav-
iors. For example, they have used the constraint, foot on the floor,
during walking. However, achieving a costly high accuracy for mo-
tion tracking is not crucial for motion interpretation in general.
Han et al. (2010) exploit the skeleton hierarchy to achieve human
decomposition and compute trajectories in manifold space on huge
animation databases. As they are using a subset of the whole
MoCap data, their solution requires a large database of similar
actions for correct interpretation. Moreover, a computationally
complex and time-consuming preprocessing stage is needed to
cluster similar actions. Ahmad and Lee (2010) have extended the
concept of motion history to the case of silhouettes. Their method,
based on SVM algorithm, depends on too many parameters making
the obtained results sensitive to the extracted silhouette accuracy
and camera viewpoint. Note that most of the silhouette-based
methods suffer from the simple ‘‘star’’ skeletonization model and
are mostly surveillance oriented rather than action recognition ori-
ented. Furthermore, they are usually vulnerable to ambiguities in
the recognition as they are using two-dimensional information
only. Shotton et al. (2011) are capable to obtain MoCap data with
good accuracy, largely enough for most HCI applications, as it has
been proved by Raptis et al. (2011). Although the efficiency for
dance actions is excellent, the whole process was limited by a
known number of actions to prevent overall error rate increase.
2.3. Related work from computer animation

The segmentation of MoCap data has been recently addressed
for motion recognition in computer animation. Barbič et al.
(2004) have used Principal Component Analysis (PCA) to search
for peaks in probabilistic distribution, using Mahalanobis distance.
In their experiments, only synthetic data have been used for a
known number of behaviors. Their major drawback is the level of
details they have used in the method. In particular, all body parts
are of equal importance in the action which means that irrelevant
motions are also included. They do not consider global orientation
for segmentation as well. Beaudoin et al. (2008) extract motifs in
MoCap databases. According to their own definition, a motif is a
subsequence of animations that are very similar to each other in
the motion space. They build transitions and obtain a motion-pat-
tern graph by hand labeling. This structure is like a recognition
structure as well as a smoothing transition tool. The lengthy pre-
processing of clustering and motif extraction makes this solution
not a real-time one and therefore, less suitable for HCI. Another
similar work by Müller et al. (2009) proposes a solution to auto-
matically annotate large set of MoCap data. It suffers from the
same drawbacks and do not propose a structure useful to recognize
new actions.
otion retrieval and interpretation. Pattern Recognition Lett. (2013), http://
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Fig. 1. This curve represents a trajectory along the X-axis of one MoCap point
projected onto a 2D spatio-temporal space. The critical changes are marked with
double side arrows and the lines represent the approximations of the trajectory
using linear regressions.
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3. MoCap data reduction

Unlike Dynamic Time Warping methods of Sakoe and Chiba
(1978), where action recognition is tightly related to time, our
solution is based on the matching of action elements, obtained
by segmenting actions into small temporal poses. These action
elements arise from our local regressions based on the exhibition
of sudden local changes. In particular, we have expressed trajecto-
ries along each of the three spatial axis in a spatio-temporal space.
Then, these trajectories are reduced into line segments via linear
regressions. The classical view dependence problem has been
overcome by using a skeleton-centric coordinate system.

3.1. Skeleton-centric coordinate system

In the context of Human–Computer Interactions, we have to
place the user in the center of the recognition process. Instead of
using a pseudo-invariant action space or looking for a reference
system which is the most discriminant for each action, like PCA
approaches, we have used a view-invariant coordinate system,
based on the user itself. Depending on the target application, dif-
ferent body-centric coordinate systems have been used in the con-
text of MoCap. In particular, the skeleton root is often used as the
origin and articulations are described hierarchically from this root.
These coordinate systems are straightforward to compute as they
are mostly implicit in the incoming raw MoCap data. Given that
Motion Capture of humans have some invariant articulations, such
as the skeleton root, we propose in this paper to use this invariance
to create a view-invariant coordinate system. Note that any effi-
cient MoCap solution provides an axis for the torso (at least one),
a distinction between front and back and, the hips. Building on this
MoCap information, we can use the directions of relevant bones to
create an orthogonal skeleton-centric coordinate system. In this
context, human actions are independent of the viewpoint and
trajectories are expressed in a way that is independent from the
choice of the coordinate system.

3.2. Trajectory modelisation

Given human body 3D MoCap points in the scene’s coordinate
system, trajectories are generally often smoothed and approxi-
mated by polynomials. Although higher degree curves would give
us better approximation of the curvatures, a linear approximation
is good enough to identify the significant changes at a much lower
cost (see Fig. 1). As one can see from Fig. 1, important changes are
typically located at local extrema. In several previous works,
especially for machine learning methods, these extrema points
are clustered and used instead of raw data. These points indicate
geometrical changes in motion but they lack information on the
intrinsic velocity and acceleration. Our linear regressions quickly
incorporate some indicators of the geometrical changes, such as
directions and velocities. These regressions can be computed incre-
mentally and, the obtained line segments provide an estimation of
the MoCap point trajectory as well as an error criterion.

3.2.1. Linear regression
We make a piece-wise linear trajectory model with the well-

known linear regression and its least-square estimator. Linear
regression aims at minimizing the least-square estimator b̂n, where

b̂n ¼ arg min
b0 ;b1

Xn

i¼1

yi � b1xi � b0ð Þ2 ð1Þ

where, in our case, xi is the time coordinate, and yi is one of the
spatial coordinates (X; Y or Z).

It can be easily shown that the above estimator b̂n can be
evaluated incrementally.
Please cite this article in press as: Barnachon, M., et al. A real-time system for m
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Rule 1. A point P is added to the linear regression
RegLinn ¼ P0 P1 � � � Pn½ � if and only if b̂nþ1

6 e, otherwise, P will
be the starting point of a new linear incremental regression.

Using rule 1, each point trajectory will be transformed into
linear segments. The e parameter describes the granularity (or
the precision) of the action segmentation. It can be adjusted to deal
with noise from MoCap points extraction.

3.2.2. Trajectory decomposition
For efficiency reasons, we have merged information from all the

three axes into one, motion-reduced, state vector. The latter
includes information on extrema for each axis, as well as speed
and velocity for each MoCap point. Indeed, speed is indicated by
the time axis, in-between two sharp changes, and acceleration is
encoded in the line slope.

To make the explanation of the next sections easier, we intro-
duce some definitions below.

Definition 1. An action cut ti is a time where a C1 discontinuity
(singularity) of the trajectory occurs.

Such transition happens when each of the three trajectories
(along the three axes) of a MoCap data has had at least one C1

discontinuity. In other words, an action cut is located at the latest
C1-discontinuity of the three projections. During the learning stage
at the beginning (resp. end) of a MoCap data stream, a top-start
(resp. top-end) is manually set. We assume that top-start (resp.
top-end) is the first (resp. the last) action cut.

Definition 2. An action element (AEP) of a single MoCap point P is
the motion of P expressed between two action cuts.

Therefore an action element AEP can be expressed as
AEP ¼ PB PE TB TE½ �, where PB; PE 2 R3, are the spatial locations
of P at times TB(beginning) and TE(end), respectively (see Fig. 2).

Let A be the set of all the skeleton’s articulations. According to
Definition 2, a path of each MoCap point for the time interval
½T0; T1�, is represented by a sequence of contiguous segments. In
particular, for each point P 2 fAg, we define the Motion Segment
of P, with respect to ½T0; T1�, to be the concatenation over time of
all the AEs.

Definition 3. Considering all points of fAgwithin the time interval
½T0; T1�, an Action Segment (AS) is defined by
otion retrieval and interpretation. Pattern Recognition Lett. (2013), http://

http://dx.doi.org/10.1016/j.patrec.2012.12.020
http://dx.doi.org/10.1016/j.patrec.2012.12.020


Fig. 2. Example of an action element (AE) defined from the linear regressions of a
MoCap point trajectory along the three axes.
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AS ¼
[

P2fAg
hhAEPiiT1

T0
¼ hh

[
P2fAg

AEPð ÞiiT1
T0

ð2Þ

where hh � � � iiT1
T0

denotes the concatenation operator for the interval
½T0; T1�.

As the length of the time interval has to be defined, we have set
T0; T1j j to be equal to c=fps, where c is a constant defining the AS

resolution and fps is the frame rate of the input video. In practice
c could be assigned a value between 6 and 10 for a good compro-
mise between speed and resolution. In other words, an AS can be
seen as the union of the AEs from all the MoCap points during a
time interval. Note that at the beginning of the MoCap data input,
the starting time of the first AS is given by a Top-start.
4. Spatio-temporal metric

Because AEs are not necessary time invariant, their comparison
must involve both spatial and temporal information. The criterion
given in Eq. 1 provides an error evaluation for the current acquisi-
tion pose that gives too much weight to the temporal error versus
the spatial one. Therefore, this simple criterion was not used in our
recognition process. Instead, we have defined a spatio-temporal
metric for measuring the distance between two AEs. When com-
paring two action elements AEP ¼ PP

B PP
E TP

B TP
E

� �
and

AEQ ¼ PQ
B PQ

E TQ
B TQ

E

� �
, the distance is given by the following

relation:
Fig. 3. Comparison of AEs the
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d AEP;AEQð Þ ¼ PP
B � PQ

B

��� ���� PP
E � PQ

E

��� ���� ���� ���
� 1þ

TP
E � TQ

E

��� ���
maxfTP

E; T
Q
E g

0
@

1
A ð3Þ

(see Fig. 3 for an illustration)
To keep the notations simple and without loss of generality, let

us assume that T0 ¼ 0, as shown on Fig. 3. This is a consequence of
our action recognition strategy being based on the independent
matching of AEs. In addition, the temporal dissimilarity has less
weight than the spatial one in our distance. Due to the natural var-
iation of body proportion and movement styles, instances of the
same action can be different, depending on the performer.

Given that each AS consists of several AEs that correspond to all
MoCap points, we need to sum up the distances from Eq. 3 for all
AEs in order to compare two ASs. Furthermore, this sum has to
be done for each spatial axis as we have three dimensions. Hence,
the distance between two Action Segments ASi and ASj is given by:

DðASi;ASjÞ ¼
XT

t¼0

X
P2fAg

d AEi
P ;AEj

P

� �" #
ð4Þ

where AEi
P and AEj

P are the action elements of ASi and ASj, respec-
tively, and T ¼maxfTASi

1 ; T
ASj
1 g (see Fig. 3).

The distance defined so far can be used for comparing two ASs
only. However, as an action is usually made of a number of ASs,
comparing an action in progress to a known candidate action can
be done incrementally. In particular, we have used a voting-like
strategy to move from one AS to the next one. If the distance D be-
tween the two current ASs is below a threshold, then the match is
accepted and the recognition process moves to the next AS. Other-
wise, the candidate action is dropped and another one is explored.
The similarity score between two actions A, the one to be recog-
nized, and B, a candidate match, at any given time is given by
the following relation:

CðA;BÞ ¼
X

i2 0;...;N½ �
1�Mð Þ ð5Þ

M ¼ DðASA
i ;ASB

i Þ
max

j2 0;...;N½ �
DðASA

j ;ASB
j Þ

n o ð6Þ

where N ¼ jAj, i.e. the number of ASs.
mselves and inside ASs.
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Hence, this similarity score is always positive and the higher its
value the better for the recognition. This score can be translated
into a percentage value when divided by the number of ASs used.
Note that this score is calculated online while the corresponding
action is progressing.

5. Recognition automaton

This section describes the framework we have used to learn and
recognize actions. Our main goal here is to perform online action
recognition using MoCap data as input.

As described in the previous sections, our trajectories are ex-
pressed in a very efficient way as they have been significantly re-
duced then expressed as compact state vectors. We have also
coupled our trajectory reduction with an efficient structure, the
proposed recognition automaton illustrated on Fig. 4. As this struc-
ture has to be easy to create and flexible enough to include new ac-
tions in a straightforward way, we have found that our best choice
for this task is the graph structure, representing an automaton.
Note that trees would not be appropriate in our case as we have
decided to avoid data hierarchy and the use of databases. Although
graphs have been used in the animation community Kovar et al.
(2002), it was with a different goal as the main target was the cre-
ation of new smooth animations from existing ones. In our case, we
are aiming at highlighting shared parts of actions as well as reach-
ing a quick decision on the recognition process. The state nodes in
our automaton graph represent the ASs of the learned actions and
each transition represents the sequence of AEs leading to the next
AS. As an action typically consists of a few ASs, it is represented by a
set of state nodes that are linked in the graph over time. An AS can
have more than one transition when it is part of more than one ac-
tion. However, each state transition in the graph has a unique label
representing the sequence of AEs leading to the next AS. The
automaton, see Fig. 4, has different kinds of state nodes. It has
Starting AS, which are the initial ASs of each learned action. Each
Starting AS represents a starting point for the recognition process
of a given action. We have also Accepting AS to mark the recogni-
tion or accepting states. In some cases, a Starting AS can be also
an Accepting AS, which translates into a loop state transition in
the graph. Such state transitions describe repetitions inside an ac-
tion. Moreover, these loops can be used for noise detection, e.g.
repetitions of successive small irrelevant actions.
Fig. 4. Part of the automaton for three learned actions A, B and C. Starting ASs are shown
ASs are represented as yellow states. For example, action A is recognized through
B0 ! B1 ! fBi ! Bjg� ! Bp ! fAk !Alg� ! Bq ! fBf ! Bgg� ! Bh . On the other h
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5.1. Adding (learning) new actions

The efficiency of our reduction process and the use of ASs in the
automaton have made the process of adding new actions straight-
forward. An incoming action, coming as MoCap data, is first re-
duced using our linear regression method then, its ASs are
constructed in sequence. If the first AS is matched to an existing
state node in the automaton, this node becomes a Starting AS (if
it was not one already). Otherwise, a new Starting AS node is cre-
ated. The same process is repeated for the remaining AS of the ac-
tion with the difference that newly created state nodes are regular
ASs or an Accepting AS for the last one. The appropriate transitions,
made up of AEs, are also created between ASs of the same action.
The pseudo-code given in Algorithm 1 summarizes the learning
process of a new action.

Algorithm 1. Adding a new action (learning) into the
automaton.

Input: Automaton Graph G and a video stream V

repeat
if Top-Start then

while not Top-End do
ASi  GetAS (from MoCap (V));
forall ASi 2 G do

if ASi ¼¼ AS then
MergeSuccessors (ASi);
MergePredecessors (ASi);

else
Add (ASi, to G);

end
end

end
end

until EndLearningProcess;

Although our recognition method is an examplar-based one,
actually more than one action instance is used in the learning
stage. First, using one examplar, an action is learned and added
to the automaton graph as described above. Then, the same action,
now known, is repeated t times and for each instance, the distances
with an arrow on them while accepting ASs are shown with double circles. Regular
the path A0 !A1 ! fAk !Alg� !An , while action B could be recognized by
and, action C does not share any node with other actions.

otion retrieval and interpretation. Pattern Recognition Lett. (2013), http://
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D, defined in Eq. 3, between the ASs, are calculated. These distances
are used to estimate the standard deviations ri for the different
ASs, and the mean of ASs is used inside the automaton. Note that
there will be no overhead for the recognition process as only one
examplar per action is added to the automaton.

5.2. Action recognition

Similar to the learning process, an incoming action, coming as
MoCap data, is reduced using our linear regression method then,
ASs are constructed and matched to the automaton nodes in se-
quence. Each state transition, made of AEs, is used to compare
the current action with a learned one, with respect to the current
AS. Hence, recognizing a whole action turns into finding a path in
our automaton graph, see the pseudo-code given in Algorithm 2.

During the recognition process of an action, we have used a
score, typically 0.9 (or 90% of similarity, like most other proposed
recognition methods), to determine whether or not an action in
progress matches a learned one. However, this score is computed
incrementally, making it possible to decide on the outcome, at
any step, of the recognition process. That is, whether the current
action (path) is a learned action or not. Furthermore, at any step,
the automaton is able to tell us whether there are multiple solu-
tions. In particular, a strong divergence of the current action at
its end, would not significantly affect the score. For instance, the
recognition process of a human fall action should not be sensitive
to the motion occurring right after the person hits the ground.

Algorithm 2. Action recognition using the automaton.

Input: Automaton Graph G and a video stream V

repeat
ASi  GetAS (from MoCap (V));
CurrentNode FindStartingAS (from G, to match ASi);
if no matching AS found then

// no action found for this ASi;
else

while CurrentNode is not an accepting AS do
ASi  GetAS (from MoCap (V));
CurrentNode FindAS (from SuccesorsðCurrentNodeÞ, to

match ASi);
if no matching AS found then

break
end

end
end

until EndOfVideoStream;
5.3. Complexity

Our proposed method allows to recognize learned actions as
well as to add new ones to the current automaton. Yet, the process
remains real-time as its computational complexity has been kept
very low, thanks to our compact trajectory linear regression and
to our automaton.

Let’s start with the recognition part and estimate its complexity
in term of number of operations (comparisons). If we assume that
we have already n actions coded in our automaton, then we have at
most n staring AS (starting points). In the worst case, we will need
to make n comparisons to find a starting point in the automaton.
Once this starting point has been found, we navigate from one
node (AS) to another, by making a few comparisons on the AEs
(transitions) at each step, until we reach an accepting state.
Although the number of transitions from one AS can be more than
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one when that AS is shared by two or more actions, it remains a
very small number that is often equal to one. The number of ASs
per action can also affect the recognition time. The worse-case rec-
ognition complexity will be Oðn�mÞ, where m is the number of
ASs per action. However, both n and m are typically two small con-
stants. The number of learned actions n cannot be very large, a few
dozen learned actions is a very realistic number. On the other hand,
m depends on the action itself and it could range from one to a few
hundreds for very long actions. In all situations, the product n�m
remains a constant with an upper bound and therefore, the com-
plexity of the recognition can be considered to be Oð1Þ. Another
important observation about very long actions is that the recogni-
tion process is done during the MoCap data acquisition. In other
words, when a long action with a lot of ASs is to be recognized,
there will be more time available for this recognition because of
the lengthy data acquisition. Hence, the recognition process re-
mains real time regardless of the length of the action.

On the other hand, there is an additional overhead for adding
new actions to the automaton graph during the learning phase.
Let’s assume again that we have already n actions coded in our
automaton. This translates into having at most n starting ASs. Let’s
also assume that our automaton has a total number of n�m nodes,
where m is the average number of ASs per action or the average
number of nodes between a starting node and an accepting one.
When a new action coming from the MoCap stream is being pro-
cessed, its first AS will be compared to all the n�m nodes of the
automaton, in a bid to find an existing AS for a match. If a match
is found, then there is no need to create a new node, otherwise, a
starting AS is created and added to the automaton. This process
is repeated again for each of the remaining AS of the new action.
Assuming that the new action has also m ASs, the learning process
requires a total of n�m2 operations in the worse case. Hence, the
complexity of this task is Oðn�m�mÞ. As discussed earlier, n and
m are small constants, for example, if we have already 30 known
actions and our m is around 50, the total number of needed com-
parisons for the worse case will be is 75,000. As for the recognition
task, although it takes more time to learn a very long action, there
is also more time available because of the lengthy data acquisition.
Note also that the vast majority of the automaton work is to recog-
nize actions, while adding new ones is done occasionally. As a con-
clusion, even if the addition of a new action to the automaton
comes with a small overhead, it has a negligible effect on the whole
process given that this is a relatively rare event, when considering
a long period of time.

6. Results

This section presents the experiments we have carried out on
both synthetic and real data. For the latter, in addition to compar-
ing our results with other methods, we have also developed an on-
line demonstrator that uses video-extracted MoCap data to control
a ‘‘software’’ by actions.

6.1. Experiments with synthetic data

The synthetic data we have used here were obtained from the
CMU Graphics Lab Motion Capture Database (MoCap CMU, 2003).
We have performed action recognition after adding different levels
of noise to our data. To achieve this, we have simply changed the
actions’ timing, and consequently velocity and gravity, to simulate
real actions done by human actors. In order to perform physical
plausible variations, we have used the method proposed by
McCann et al. (2006). The deformation is based on a cubic spline
expressed in the fsourcetimeg � fplaybacktimeg space. In this
system, variations are expressed by a set of constraints with fric-
tion, gravity, ground contact, etc. The obtained result is an optimal
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Table 1
Obtained results on 15 actions from MoCap CMU (2003), where A and B are two actors. The ‘‘# AS’’ column shows the number of action segments obtained from our reduction
process while the next column gives the percentage ratio between these ASs and the original number of frames.

Action name # AS Reduction Rate (%) Learning time Video length (s)

1 Walk, shake hands (1) 87 71.10 0.002 2.50
2 Walk, shake hands (2) 87 71.10 0.101 2.50
3 A pulls B (1) 87 85.30 0.168 4.93
4 A pulls B (2) 89 78.02 0.946 3.38
5 A pulls B by the elbow (1) 87 80.13 0.994 3.65
6 A pulls B by the elbow (2) 87 78.62 0.517 3.39
7 Navigate busy sidewalk 69 76.28 0.586 2.42
8 Conversation (1) 87 95.83 0.647 17.38
9 Conversation (2) 70 62.50 0.948 1.93

10 Quarrel (1) 87 95.18 1.122 15.04
11 Quarrel (2) 87 93.06 1.404 10.44
12 Friends meet, hang out 87 95.05 1.471 10.44
13 Run, scramble for last seat (1) 87 81.33 1.934 3.88
14 Run, scramble for last seat (2) 87 73.80 2.013 2.77
15 Chicken dance 87 92.96 2.113 12.8

Fig. 5. Recognition results for 15 synthetic actions made on 100 random variations for each action (variations were obtained using McCann et al. (2006)).
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motion related to the spline made by the user. As a consequence,
this type of simulation is plausible, i.e. a real actor will likely do
the same motion given these constraints.

Table 1 summarizes our results using 15 actions from MoCap
CMU (2003). As shown in the ‘‘Reduction Rate’’ column, the number
of ASs, resulting from our data reduction process, is much smaller
than the MoCap raw data. We have computed, as a percentage, the
ratio between the obtained number of ASs and the original number
of frames per action. Note that each frame represents a set of joints
(articulations of the tracked skeleton) within an action. When noise
is added, as described above, the number of ASs increases slightly by
1–5%. Although the learning time increases with the size of the
graph, it remains very small and less than the video length for all
the 15 actions. On the other hand, the recognition process remains
real time regardless of the video length and the graph size. Using
the method by McCann et al. (2006), we have generated 100
variations for each of these 15 actions and used them for our recog-
nition tests. Fig. 5 summarizes the obtained results with an excellent
recognition rate close to 100% for all actions.

We have also carried out experiments to illustrate qualitative
results when noise is added. Fig. 6 shows some kind of variations
applied to our actions. We can see that the proposed solution is
not that sensitive to time variation in action recognition. Even in
presence of high time variations, we are still able to recognize
the original actions performed, and most of the time, common
parts to other actions.

6.2. Experiments with real data

We have carried out three sets of experiments with real data,
described below in parts I, II and III. In the first set, we have tested
Please cite this article in press as: Barnachon, M., et al. A real-time system for m
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the proposed method for robustness and accuracy, while in the
second set of experiments we have compared it to several state-
of-the-art action recognition methods. Finally, we have developed
an online demonstrator that uses video-extracted MoCap data, to
control a ‘‘software’’ by actions.

In all our real experiments, we have used live Motion Capture
data obtained with the method proposed by Shotton et al.
(2011). The latter performs real-time Motion Capture from the
kinect sensor system (see Fig. 7).
6.2.1. Part I: first set of experiments
We have created our own database of 23 different actions to

demonstrate the recognition ability and effectiveness of our sys-
tem (see Fig. 8). In particular, each action has been performed 5
times by one actor to set the means for the ASs, as described in Par-
agraph 5.1. Then our recognition system was used to recognize the
different actions performed by 5 different actors, where each actor
repeated the same action 5 times. As it can be seen from Fig. 8, the
success rate is always above 80% and mostly above 90%. This is a
very good success rate given the variety of the actions and actors.
6.2.2. Part II: comparison
We have compared our method to Yao et al. (2011); Müller et al.

(2009); Tenorth et al. (2009) and Krausz and Bauckhage (2010).
These solutions involve three different datasets, the HDM dataset
and a restriction of the CMU dataset, both proposed by Müller
et al. (2009); and the TUM dataset, proposed by Tenorth et al.
(2009). The HDM and CMU datasets are made by markers Motion
Capture systems while the TUM dataset is an acquisition of differ-
ent scenarii in a kitchen. For the latter, the actor is asked to dress a
otion retrieval and interpretation. Pattern Recognition Lett. (2013), http://
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Fig. 6. Variations of the walk action 18 01 (figures (b)–(e)) and jump action 16 03 (figures (g)–(j)) where the original actions are represented with the red line on figures (a)
and (f) while the other splines represent their physics-based motion re-timing. Figures (b)–(e) and figures (g)–(j) illustrate the differences between original and perturbed
poses for a number of motion re-timings.
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table, carrying one or several objects at the same time. Previous
proposed solutions are machine learning oriented, i.e. they involve
multiple training samples and need a statistical validity of action
(intra-class variations).

As actions are simpler in the HDM and CMU datasets, our solu-
tion outperformed the method by Müller et al. (2009) on these two
datasets. Note that their goal was to create a tool for animators
Please cite this article in press as: Barnachon, M., et al. A real-time system for m
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while ours is to recognize human action. They have usually made
several classes for single actions. For instance they have different
classes for the action ‘‘walk’’: starting left foot, starting right foot,
one step, two steps, etc. In our case however, walking has to be
in the same class, regardless of the starting foot. Hence, we ended
up with less classes than Müller et al. (2009) as we have combined
several of their classes into single ones.
otion retrieval and interpretation. Pattern Recognition Lett. (2013), http://
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Fig. 7. Example of real actions used in our experiments.

Fig. 8. Results on 23 real human actions where the recognition percentage is scaled to be between 50% and 100% for clarity.

Table 2
Comparison of our solution with state-of-the-art datasets.

Method Dataset

HDM (%) CMU (%) TUM (%)

Müller et al. (2009) 80 75 –
Yao et al. (2011) – – 81.50
Krausz and Bauckhage (2010) – – 67
Tenorth et al. (2009) – – 62.77
Our 91.34 90.78 85.30
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The TUM dataset is more complex as it is made of everyday hu-
man activities. Actions are shorter, close to each other and some-
times difficult to identify. Indeed, Tenorth et al. (2009) have
proposed three different labels for each frame: left hand, right
hand and torso. To be consistent with others (Tenorth et al.,
2009; Krausz and Bauckhage, 2010; Yao et al., 2011), we have used
the same learning procedure, i.e. seven sequences for testing and
the others for training. We have used 10 classes of actions and used
the right hand labels as ground truth.

The obtained comparison results are summarized in Table 2.
Our solution outperformed the best result of Yao et al. (2011) for
this dataset with a 3.8% margin, without using 2D information
from images as they do. The other methods were significantly out-
Please cite this article in press as: Barnachon, M., et al. A real-time system for m
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performed even that Tenorth et al. (2009) were using RFID sensors
for doors.

We can also mention and discuss two other methods that use
3D information as we do, without being able to perform experi-
mental comparisons because of lack of the datasets used in these
publications. The method by Weinland et al. (2007) uses 3D infor-
mation to avoid view ambiguity but it is aimed at distinguishing
between very different actions. The other method, by Okada and
Stenger (2008), has the advantage of using a simple single camera
for Motion Capture. However, their 3D information is a model-
based approximation of the actual 3D structure. In particular, they
have to generate thousands of models to fully and precisely
approximate the human body. Furthermore, they did not propose
action identification and/or recognition. Our examplar-based solu-
tion is not based on complex model nor does it need an expensive
batch process to compute a recognition-ready space.

Our proposed method is able to overcome the previous limita-
tions as it is using the full 3D skeleton, extracted using MoCap tech-
niques. We can easily distinguish between very similar actions, like
sitting and bending actions (see the recognition rate in Fig. 8, which
is around 90%). For example, using a hand, we can replace mouse ac-
tion (even without recognizing actions). We can ‘‘record/learn’’
many computer shortcuts and replace them with simple human
body actions. We can also navigate through ‘‘noisy actions’’ as we
did not use generic models to perform Motion Capture.
otion retrieval and interpretation. Pattern Recognition Lett. (2013), http://
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6.2.3. Part III: a demonstrator
We have used a demonstrator to illustrate HCI possibilities. The

demonstrator is a simple slide viewer where, actions are mapped
to common commands such as next/previous slide, begin/end,
etc. The user can choose its own way of making these commands,
with a ‘‘top start’’ and a ‘‘top end’’ from the MoCap stream (this
part is done with the help of a WiiRemote). The video, given in sup-
plemental material, shows its efficiency in a presentation context
(see Fig. 7 for an snapshot).

In order to minimize noise sensitivity for this demonstrator, our
reduction process required at least 10 frames before creating a
single AS. In addition to overcoming the noise problem, this mini-
mum number of frames has allowed us to prevent over segmenta-
tion, as 10 frames for this MoCap solution represents 1

3 second of
video input. Small range motions for the case of this proposed
demonstrator were also filtered out thanks to this requirement.

7. Conclusion

We have proposed in this paper a new framework for online ac-
tion recognition, also known as online Motion Capture interpreta-
tion, using 3D markerless MoCap data as input. The contributions
of this paper are twofold. (1) A new method to reduce the raw
MoCap data into linear regressions, expressed in compact state
vectors, was proposed and, (2) a real-time method, using a
graph-based automaton, to learn and recognize actions. We have
also overcome the view-dependency problem by defining and
using a skeleton-centric coordinate system. The proposed method
has the advantage of being linear and incremental and therefore,
making the recognition task very fast. Furthermore, the addition
or learning of a new action is also straightforward.

Our experiments with synthetic data, obtained from the CMU
Graphics Lab Motion Capture Database, have yielded extremely
high recognition rate even when noise was added to the simula-
tions. Our experiments with real datasets, constructed by our
group, have also shown the robustness and effectiveness of our
method. In addition, we obtained better recognition rate when
we compared our method to four others, using well known data-
sets. We have also successfully demonstrated our system on real
videos for the case of a slide viewer, where a speaker uses his
hands to command a slide show.

Note that the proposed recognition method has numerous appli-
cations as it can be applied to almost any Human Computer Interac-
tion situation. In particular, it can be used to enhance and make 3D
computer games more attractive with plenty of new possibilities.

Our future work will include the extension of this approach to
cope with very different accelerations in actions and to make dis-
tinction between multi-resolution actions, i.e., to distinguish inner
behaviors within an action, like exhibiting step during walk or
dance. We also plan to investigate the possibility of including
machine learning aspects to our method in order to make it more
robust when MoCap fails to extract the correct motion information.
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