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Ongoing human action recognition is a challenging problem that has many applications, such as video
surveillance, patient monitoring, human–computer interaction, etc. This paper presents a novel frame-
work for recognizing streamed actions using Motion Capture (MoCap) data. Unlike the after-the-fact
classification of completed activities, this work aims at achieving early recognition of ongoing activities.
The proposed method is time efficient as it is based on histograms of action poses, extracted from MoCap
data, that are computed according to Hausdorff distance. The histograms are then compared with the
Bhattacharyya distance and warped by a dynamic time warping process to achieve their optimal
alignment. This process, implemented by our dynamic programming-based solution, has the advantage
of allowing some stretching flexibility to accommodate for possible action length changes. We have
shown the success and effectiveness of our solution by testing it on large datasets and comparing it with
several state-of-the-art methods. In particular, we were able to achieve excellent recognition rates that
have outperformed many well known methods.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Human action recognition is a challenging research problem in
computer vision that, if solved, would enhance numerous applica-
tions in areas ranging from Human Computer Interface (HCI) to
entertainment. For instance, human action recognition could help
to identify suspicious activities. In entertainment applications,
recognizing players' actions makes the game more attractive, more
user-friendly and increases its potential. Given its importance in
numerous applications, the problem of action recognition has
attracted a great deal of research works over the last decades.
Although ambiguous 2D images have been traditionally used as
inputs for action recognition, numerous researchers have started
using MoCap data for action recognition [30,44,40]. In particular,
newly available low cost depth sensors, such as Microsoft Kinect
and its real-time MoCap system [35], can be used to enhance the
user's experience with games, serious games, presentation
softwares, etc.

This paper proposes a novel examplar-based human action
recognition system, that uses MoCap poses as input. We first
extend the concept of histograms to the case of poses. Then,
spatio-temporal series of poses are clustered to create a statistical
representation of actions. Note that when an action consists of
cycles, for example walking, its histogram, or part of it, is affected
ll rights reserved.

mathieu.barnachon@liris.
fama).

et al., Ongoing human actio
.020i
by a scale only. We have also introduced an incremental and
memory efficient structure, the integral histogram, to allow for
ongoing activity recognition. Finally, a dynamic programming
algorithm, inspired from the Dynamic Time Warping (DTW)
method [33], is used to compare sub-actions and to compute the
recognition score between multiple human action instances. To
the best of our knowledge, this paper is the first to propose a
solution using histograms of 3D Motion Capture data for action
recognition. The efficient formulation of histograms has made it
possible to learn and recognize actions during their progress. We
have validated our proposed approach with extensive tests on
well-known benchmark datasets, and we have compared it to
several state-of-the-art methods. The obtained results have clearly
shown the success and effectiveness of our solution, even in the
presence of noise and/or similar actions in the datasets.
2. Previous works

This section summarizes major previous works in human
action recognition, and briefly surveys three related issues: the
body skeletonization, the body shape analysis and the extraction
of feature points. For an extensive survey on human action
recognition, the interested reader may consult [1].

The skeleton is usually easy to extract and is known to make an
efficient and compact representation of a shape, like the human
body [39]. The first body skeletonization method to analyze
actions was proposed by Fujiyoshi et al. [12]. Their method
performs a skeletonization of the body contour to identify walking,
n recognition with motion capture, Pattern Recognition (2013),
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running and gait. Their solution is simple to use and depends only
on a single 2D image to extract the skeleton. Although the
recognition process of this method is very efficient for simple
activities, it suffers from the simple “star” skeletonization problem
as well as from visual ambiguities. Ziaeefard and Ebrahimnezhad
[47] have proposed an improvement for this method. They have
introduced a normalized-polar histogram, obtained from the
extracted “star” skeleton, that corresponds to a cumulative skele-
ton during one action cycle. In particular, they have analyzed
different skeletonization methods and proposed an SVM classifi-
cation technique to recognize actions. Tran et al. [37] have used a
different skeletonization method and have achieved better results
on the same datasets. However, as they have used polar histo-
grams instead of time-based histogram, the temporal information
is lost. Lv and Nevatia [22] have proposed a MoCap-based solution
where actions are modeled by a set of virtual key-poses. This is
somehow similar to the animation key-poses that represent
important poses and/or transitions between sub-parts of actions.
This solution is limited by the number of extracted key-poses and
by their computational complexity.

Cuntoor et al. [9] have suggested that trajectories contain the
most discriminative information that is relevant to human action
analysis. Inspired by this observation, Li and Fukui [20] have
proposed a trajectory-based solution using Motion Capture data
to identify human actions. However, they have only tested their
solution on simple cases and not on real human data variations.
Using a large database, Han et al. [13] have exploited the skeleton
hierarchy to compute trajectories, where actions were represented
in a manifold space. As they have used not all but a subset of joints,
they needed very large samples in the training set and a high
intra-class variation. Therefore, the clustering process of similar
actions in their approach was complex and time consuming. Baak
et al. [3] and Müller et al. [27] have addressed the problem of
action recognition using the idea of Motion Template. They extract
patterns from a sequence of animation to recognize actions,
transforming the recognition problem into a tractable pattern
recognition problem. In [3], a method was proposed to improve
MoCap extraction, using a database of priors such as, feet on the
ground during the walk, etc.

Recently available, cheap and easy to use, depth sensors have
opened new perspectives for solving the problem of action recogni-
tion. Raptis et al. [30] have used joint angles as features to recognize
dance actions in a game-based application. As mentioned by the
authors, their method is limited by the number of actions. In
particular, when the number of different classes is large, their error
rate increases drastically. With similar input data, Wang et al. [40]
have introduced the concept of actionlet. They cluster joints and
depth neighborhoods in order to be more discriminant. For
instance, “drinking from a cup” and “eating a peanut” can be
discriminated according to the depth data around the hand. How-
ever, the MoCap data has to include depth information, which is not
always possible. Related works from the animation community are
also relevant to action recognition. Barbič et al. [4] have used the
Principal Component Analysis (PCA) to extract a known number of
similar behaviors. Beaudoin et al. [5] extracted subsequences of
animations, that are similar in the proposed “motion space”, then
used a graph-based solution to create smooth transitions between
animations. Given that these solutions were designed to be anima-
tion tools, i.e. to produce smooth transitions between animations,
they suffer from the lack of efficient interpretation structures.

Instead of using skeleton, many researchers have used human
shape analysis, mostly silhouettes, to address human action
recognition. Bobick and Davis [7] have introduced Motion Tem-
plates from Motion History Image (MHI), where the recognition
problem is turned into a matching problem. Although their system
is faster than classical machine learning approaches, it is still time
Please cite this article as: M. Barnachon, et al., Ongoing human actio
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consuming and not flexible enough for extending the database. To
address the efficiency of the database, Elgammal et al. [11] have
used the “examplar” paradigm with silhouettes. In particular, the
Markov model and the “examplar” paradigm lead to a light
training database. Although their solution is efficient for adding
new actions, it suffers from the view dependency problem, which
is inherent to silhouettes. The proposed solution is more appro-
priate for “simple” gesture recognition than “complex” action
recognition. Huang and Trivedi [16] have presented the concept
of cylindrical histogram, where multiple views are used to con-
struct a 3D histogram of voxels. Weinland et al. [41] have adapted
the 3D histogram process to the examplar paradigm for view-
independent learning from multiple views. Boulgoris and Chi [8]
have proposed a hybrid solution that uses labelled body parts from
silhouettes. Even though their solution is efficient for gait analysis,
its use for general action recognition is hindered by its labeling
process that has to be done separately. Xiong and Liu [43] have
also used a Markov model with silhouettes to recognize mainly
simple behaviors. Yilmaz and Shah [46] considers a silhouette as a
2D surface and construct a 3D surface from a sequence of spatio-
temporal silhouettes. Then, they extract interest points from the
obtained 3D surface, creating something like a trace of an action.
Unfortunately, their process is not real-time because it requires an
expensive stage of silhouette correspondence for computing the
3D surface. In addition, the obtained lengthy volume is dependent
on the silhouette quality, which is prone to errors. Ahmad and Lee
[2] have proposed an extension of the MHI where they have used
an SVM to cluster actions. As they were using too many para-
meters in their system, it was difficult to draw a strong conclusion
from their results. Tseng et al. [38] have developed a silhouette-
based approach, where silhouettes were used as characteristic
vectors. Their actions were clustered using a dimension reduction
method, then the k-nearest-neighbor algorithm was used on a
temporal graph in the recognition stage. Because their solution
depends on the quality of the extracted silhouettes, the recogni-
tion success might suffer from it.

Many other previous research works on action recognition have
used feature points in a spatio-temporal framework. Laptev and
Lindeberg [18] extended the Harris and Stephen detector [14] to the
spatio-temporal case. Dollar et al. [10] have proposed another
spatio-temporal feature detector, especially designed for cyclic
motion in actions. They introduced the concept of cuboid, widely
followed by others, where each cuboid encodes information about a
local neighborhood. As the spatial locations of cuboids were
ignored, it has lead to the concept of bag of words. Ryoo [31] has
used these bags of words to construct histograms and use them for
ongoing activity recognition. Their solution uses 2D image features,
instead of our 3D primitives, and is not examplar-based. In
particular, their training phase requires more processing, making
it difficult to add new actions. One can also consider the work of
Scovanner et al. [34] where the SIFT detector was extended to the
3D case of action recognition. Their solution is usually used with an
extrusion of spatio-temporal volume from 2D images, a complex
process that is also sensitive to the background extraction result.

More recently, many researchers have worked on spatial
configurations. Wong et al. [29] have proposed an extension to
the pLSA space to model spatial relations [42]. Ryoo and Aggarwal
[32] introduced the Spatio-Temporal Relationship match (STR
match) to consider the spatial information with the temporal
one. Yao et al. [45] obtained a non-linear latent space to discrimi-
nate between complex activities in a kitchen. Although their
solution can be considered efficient, their latent space is complex
to compute and need a huge training set to be effective. By
contrast, our solution can work with smaller training sets. In
particular, our proposed method outperformed their recognition
rate for the kitchen scene, as shown in the experimental results.
n recognition with motion capture, Pattern Recognition (2013),
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3. Histogram-based comparison

This section describes our proposed histogram-based method
to classify actions from MoCap data. Let P be the set of all poses,
extracted from a video stream. Let A¼ ðp0;…; pNÞ be an action
consisting of a time-ordered sequence of poses, assuming A starts
at time t0 and ends at time tN. To keep the notations simple and
without loss of generality, let us assume that t0 ¼ 0. A pose is
geometrically represented by a simple human skeleton that con-
sists of a set of 3D joints with hierarchical relations. Note that
because of noise perturbations and speed variation of movements,
two different actions may contain some identical poses and
instances of the same action may be slightly different. To over-
come this problem, all poses composing an action are grouped,
based on similarity criteria of their appearances, into a set of
clusters. Then, each of these clusters is defined by a representative
element, denoted by ~p and called delegate. To quantify the
similarity between two poses, p1 and p2, we have used the well
known Hausdorff distance [15], denoted by DP hereafter, that
provides an elegant way to compare two poses. In order to achieve
the clustering mentioned above, we have defined the following
ε�equivalence between two poses.

Definition 1. Let DP be a distance between two poses, the
ε�equivalence between p1 and p2 is given by

p1∼p2 ⇔ DPðp1; p2Þ≤ε ð1Þ

where p1; p2∈P2.

In our case, a delegate ~p is the median element of its
ε�equivalence cluster of poses, where ~p∈ ~P , and ~P⊂P is the set
of delegates. Using the above definition, we can introduce the
following cumulative frequency occurrences of a delegate ~p from
an action A¼ ðp0;…; pNÞ of length tN.

f ΔTA ð ~pÞ ¼ jfpt=t∈ΔT∧pt∼ ~p ∀pt∈Agj ð2Þ

ΔT ¼ ½ti; tj�=t0 ≤tiotj≤tN ð3Þ

where j � j is the cardinal of poses.
Note that when totN , we are considering a restriction of action

A to the time interval ½0; t�. Such a restriction is useful to us as we
are interested in recognizing actions even before they are com-
pleted. To do so, we need to evaluate the likelihood over time of
the ongoing MoCap data to be one of our previously learned
actions. We have defined our own integral histogram of actions
that we have used to compute this likelihood for the recognition
decision process.

Definition 2. A pose-based integral histogram, H of action A, is a
histogram given by

HΔT ðA; ~P Þ ¼ ff ΔTA ð ~pÞ= ~p∈ ~P g ð4Þ

In order to measure the similarity between two histograms, we
have used the Bhattacharyya distance [6] x with our pose-based
integral histograms. This histogram distance, denoted DH, between
two actions A and B is given by

DHðHΔTA ðA;PÞ;HΔTB ðB;PÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− ∑

~p∈ ~P
M

r
ð5Þ

where

M¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ΔTA
A ð ~pÞ � f ΔTB

B ð ~pÞ
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ ~p∈ ~P f

ΔTA
A ð ~pÞ �∑ ~p∈ ~P f

ΔTB
B ð ~pÞ

q ð6Þ
Please cite this article as: M. Barnachon, et al., Ongoing human actio
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Using relation (5), we can introduce the following cost function
to evaluate the similarity between two actions A and B.

CostðA;BÞ ¼DHðHTA ðA;PÞ;HTB ðB;PÞÞ ð7Þ
where TA and TB represent the end times (or lengths) of A and B,
respectively.
4. Online recognition

4.1. Piece-wise action comparison

Because integral histograms lack the temporal information
about poses, we propose to decompose actions into time-
ordered sub-actions. Given an action A, defined by a time-
ordered sequence of poses ðp0;…; pnÞ, all possible decompositions
of A into sub-actions, of lengths ranging from 1 to n+1, can be
defined using the following recursive formulation:
�

n re
A has 1 pose: A¼ ðp0Þ
DecompðAÞ ¼ fð½p0�Þg ð8Þ
�
 A has 2 poses: A¼ ðp0; p1Þ
DecompðAÞ ¼ fð½p0�½p1�Þ; ð½p0�Þð½p1�Þg ð9Þ
�
 A has 3 poses: A¼ ðp0; p1; p2Þ
DecompðAÞ ¼ fð½p0�½p1�½p2�Þ; ð½p0�½p1�Þð½p2�Þ;

ð½p0�Þð½p1�½p2�Þ; ð½p0�Þð½p1�Þð½p2�Þg ð10Þ

⋮

�
 A has n+1 poses: A¼ ðp0;…;pnÞ

DecompðAÞ ¼ ⋃
s∈DecompðA\fpngÞ

fConcatðs; fpngÞg∪ðs; fpngÞ ð11Þ
where

Concatððpa;…; pbÞ⋆ðpi;…; pn−1Þ; f½pn�gÞ
¼ fðpa;…; pbÞ⋆ðpi⋯pn−1pnÞg ð12Þ

where 0≤a≤bo i≤n−1, and for A¼ ðp0;…pn−1; pnÞ and ðpiÞ⋆ means
that the sequence ðpiÞ could be repeated 0 to N times, like in
regular expressions.

A\fpng ¼ ðp0;…; pn−1Þ ð13Þ
When comparing an action A to another action B, we have to find
the optimal sub-action decompositions of A and B that yield the
minimum score, given by Eq. (7). To this purpose, we build one
histogram for each sub-action, yielding a time-ordered sequence
of histograms for the whole action. For instance, a 4-pose-based
action A decomposed into 3 subactions can be represented by
three ordered histograms as follows:

A¼ ð½p0�Þ|fflffl{zfflffl}
h0

; ð½p1�½p2�Þ|fflfflfflfflffl{zfflfflfflfflffl}
h1

; ð½p3�Þ|fflffl{zfflffl}
h2

⇒ A is represented by ðh0;h1;h2Þ ð14Þ

Therefore, an action decomposition can be considered as time
series of sub-integral histograms, represented by a vector
ðh0;…;hNÞ of length not greater than N.

To effectively compute the optimal sub-actions decomposition,
we have used the dynamic programming paradigm, which is the
best choice in this case. In particular, to compare action A to action
B, all possible decompositions of A and B are evaluated and the
best score (cost⋆) is selected. This is done through the following
cognition with motion capture, Pattern Recognition (2013),
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recursive relations.

Cost⋆ðhA0 ;hB0Þ ¼ CostðhA0 ;hB0ÞCost⋆ðhA
i ;h

B
j Þ

¼ CostðhAi ;hBj Þ þminfCostðhA
i−1;h

B
j Þ;

CostðhAi ;hBj−1Þ;CostðhAi−1;hB
j−1Þg ð15Þ

where, ðhA0 ;…;hANÞ and ðhB0;…;hBMÞ refer to A and B, respectively.

4.2. Multi-hypothesis

Using a single instance per action as a training set will not yield
a good recognition rate. This is because of the occurring natural
variations in human activities, due to different body proportions
and movement styles. In particular, two instances of the same
action can be slightly different with respect to poses. To overcome
this problem, the training set of each action should consist of
multiple instances of the same action. These multiple instances are
translated into multiple histograms. Rather than combining an
action's multiple histograms into a single one, which is a challen-
ging task, we propose to use several histograms to represent an
action. These different histograms, representing a single action, are
referred to as hypotheses. Note however, that if we are given n
instances of the same action as a training set, we will end up with
fewer than n hypotheses. This is because instances found to be
very similar are clustered into a single hypothesis. In practice, we
have achieved this using the K-medoids algorithm, which has many
similarities with the K-means algorithm. These two algorithms
differ from each other by the choice of the median element. In the
K-means case, the median is the barycentric center of the cluster,
whereas, for the K-medoids the median is an element of the cluster,
the closest one to the barycentric center of the cluster.

Algorithm 1. K-Medoids: finds the best partition of a set into K
groups and returns the closest element to each center.
Table 1
The training and test sets we have used from the CMU MoCap dataset.

Name Training sets Sequences used as testing sets

Walk 02_01 02_02;03_01;05_01;07_01;08_01
Run 02_03 09_01;17_01;35_22;77_10;141_02
Punching 143_23 02_05;111_19;113_13
Boxing 13_17 13_18;14_01;14_02;14_03;14_13;80_10
Jump 13_32 13_39;13_40;16_01;16_03;118_02
Shake hands 18_01 18_02;19_01;19_02;79_06;141_23;80_73
Laugh 13_14 13_15;13_16;14_17;14_18;14_19
Drink 13_09 14_04;14_37;23_13;79_38;79_40
Eat 79_12 79_15;79_42;80_11;80_33
The distance function used in the above algorithm is the one
defined in Eq. (7) and each medoid is a histogram representing a
single hypothesis.

In other words, given that “very similar” histograms are not
better than a single one, we only keep those histograms that
represent “different” instances of the same action. The set of these
“different” histograms, call it HA, represents the multiple hypoth-
eses for the same action in the recognition stage. Hence, our
recognition score is computed using the following equation:

CostmultiðA;BÞ ¼ min
hA∈HA

fCost⋆ðhA;hBÞg ð16Þ

whereHA is the set of multiple hypotheses of action A and hB is the
histogram of the ongoing action to be recognized.

5. Results

We have tested our method on four different datasets, HDM,
CMU, TUM and MSR Action3D. Both HDM and CMU are game-
Please cite this article as: M. Barnachon, et al., Ongoing human actio
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oriented where actions were created for a computer animation
purpose. These two datasets consist mostly of well defined short
actions, making it easy to evaluate the recognition performance.
Actions in the TUM and MSR Action3D datasets are more realistic
as they consist of real human activities in a complex and natural
environment. These two datasets have allowed us to test the
robustness of the proposed method and to compare it with others.

5.1. Game-oriented dataset

We have tested our system on the HDM dataset of actions from
[26]. This dataset consists of 130 classes, obtained from 2337
actions (cuts of longer capture sets), made by 5 different actors.
We have considered the two scenarios, single-hypothesis and
multi-hypothesis. In the former case, we have randomly selected
one action instance from each class (random execution, random
actor) and used it as a training set. Whereas in the multi-
hypothesis case, we have randomly selected a few action instances
from each class and have kept only three instances to represent
each action. We have also constructed another dataset, consisting
of 9 classes out of 53 actions, from the very large and complex
CMU dataset [24] (see Table 1).

Compared to the results published in [28], where a similar
subset of CMU dataset has been used, our solution has performed
much better. Their recognition rate was around 75%, whereas ours
are 86.63% and 90.92% for the single-hypothesis and multi-
hypothesis, respectively.

Fig. 1(a) and (b) presents the results of the single hypothesis as
confusion matrices computed with ε¼ 1:0. These two figures show
in particular that our method highly discriminates between
different actions. It also highlights similar actions, such as “Boxing”,
“Drink” and “Eat”, as the three of them involve hand activities. The
multi-hypothesis solution, shown in Fig. 1(c) and (d), is clearly
more discriminant, as it allows more intra-class variations. Note
that for the multi-hypothesis solution, the 130 initial classes were
manually reduced to 33 different classes, to be semantically
consistent with usual approaches dealing with 2D actions. The
resulting dataset is actually more challenging for examplar-based
approaches. Indeed, with 33 classes there is more intra-class
variation than with the original 130 classes. Because we have used
only 3 instances per class for training, any increase in the intra-
class variation will add extra challenge to our recognition method.
In fact, the task would be easier if we simply add more training
samples and keep all the 130 initial classes. The difficulty arises
from the additional intra-class variations (e.g., number of steps or
left/right first step used for walk), a more challenging context for
any examplar-based recognition method. On the other hand,
classical machine learning approaches use much larger training
sets, making them more successful when the number of classes is
small (Fig. 2).

More quantitative scores are shown in Table 4, where the
proposed method clearly yields excellent results when compared
to others. Although the single-hypothesis recognition rate is
n recognition with motion capture, Pattern Recognition (2013),
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Fig. 1. Confusion matrices for HDM and CMU datasets, where image colors are in logarithmic to enforce contrast. The multi-hypothesis results in (c) and (d) are clearly
superior than the single-hypothesis results in (a) and (b). (a) HDM single (130 classes), (b) CMU single, (c) HDM multi (33 classes) and (d) CMU multi. (For interpretation of
the references to color in this figure caption, the reader is referred to the web version of this paper.)
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outperformed by two out of three previous works, our method is in
a disadvantageous situation with its one-vs-one strategy. However,
our fully automatic multi-hypothesis solution has outperformed all
three methods in a similar context. For example, [28] has an average
recognition rate of 80% whereas our multi-hypothesis achieved a
rate of 96.67% on the same dataset. Note also that in [28], keyframes,
used in the queries, were manually selected.

5.2. Activity dataset

5.2.1. TUM
In order to compare our solution with activity recognition

methods, we have used the TUM dataset [36] that consists of 20
sequences of people setting the table. Like in [44], we have applied
two different strategies: using the set of sequences {0–2, 0–4, 0–6, 0–
8, 0–10, 0–11, 1–6} as a test set, while the others are used for training.
To be consistent with others [17,36,44], we have used 10 different
classes, where “standing” and “walking” were separated. As shown in
Table 2, the obtained results are very good compared to the 81.5%
recognition rate reported in [44], which uses 2D features and MoCap
information from the TUM dataset. They are also much better than
the 67% of [17], where only 2D features were used. Finally, our results
outperformed the recognition rate of 62.77% reported in [36], even
with their extra sensors used for doors.
Please cite this article as: M. Barnachon, et al., Ongoing human actio
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We have also carried out a number of experiments – known as
one-vs-one or one-shot learning – where, we used the first instance
of each action from the training set for learning. We have
compared our results to three classical machine learning algo-
rithms: a kernel-based SVM with Radial Basis Function, a k-
Nearest Neighbors and, a Tree classification. The training set for
these methods is the same as in [17,36,44]. An example of the one-
vs-one learning is given in Fig. 3 showing the recognition score for
the full sequence 0–2, using the actions of sequence 0–12.
Although there is less ambiguity for this dataset, some actions
were not recognized due to the complexity of their execution and
the lack of intra-class variation information.

We have summarized all the results in Table 2. Our solution
slightly outperforms the three approaches SVM, kNN and Tree, for
the one-vs-one learning, and significantly outperforms six state-
of-the-arts methods (SVM, kNN, Tree and [17,36,44]) for the multi-
hypotheses learning.
5.2.2. MSR Action3D
The MSR Action3D is a newer dataset, created by Microsoft

Research in 2010, that aims at providing 3D data for action
recognition. This dataset, first used in [19], is made up of twenty
actions performed by ten actors, where each action has three
n recognition with motion capture, Pattern Recognition (2013),
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Fig. 2. Samples images of data used in the training and recognition. (a) CMU Walk, (b) HDM Lie Down, (c) CMU Run, (d) HDM Sit Chair, (e) CMU Jump and (f) HDM Elbow
to Knee.

Table 2
Comparisons of different solutions on the TUM dataset. The “–” entry means no
result was reported by the other methods for the one-vs-one strategy.

TUM (one-vs-one) (%) TUM (full) (%)

SVM (RBF+K) 49.52 54.67
kNN 51.41 71.34
Tree 26.67 75.28
[36] – 62.77
[17] – 67
[44] – 81.50
Proposed method 56.82 92.56
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instances. The dataset consists of the following actions: high arm
wave, horizontal arm wave, hammer, hand catch, forward punch,
high throw, draw x, draw tick, draw circle, hand clap, two hand wave,
side boxing, bend, forward kick, side kick, jogging, tennis swing,
tennis serve, golf swing, pick up & throw. Actors were requested to
Please cite this article as: M. Barnachon, et al., Ongoing human actio
http://dx.doi.org/10.1016/j.patcog.2013.06.020i
use their right arm or leg, when only one arm or one leg is
involved in the action. The depth maps of these actions were
obtained with Microsoft Kinect sensor and the skeletons were
extracted using the method in [35] (see Fig. 4 for examples of
actions). This dataset is a challenging one due to the noise in the
extracted skeletons. In particular, the obtained skeletons have
more noise than the ones in the TUM dataset, and even more
than the ones in HDM and CMU.

Using these datasets, we have compared our approach to five
state-of-the-art methods [19,21,23,25,40]. Except for [19], where
depth maps were used as inputs, the other four methods
[21,23,25,40] as well as ours use skeleton inputs, extracted from
video streams. with an action graph to model the dynamic of
actions. Note that we have used the test results on the MSR
Action3D dataset of [21,23,25] that were reported in [40]. Table 3
summarizes this comparison and shows in particular, that
our multi-hypothesis approach clearly outperforms the other
n recognition with motion capture, Pattern Recognition (2013),

http://dx.doi.org/10.1016/j.patcog.2013.06.020
http://dx.doi.org/10.1016/j.patcog.2013.06.020
http://dx.doi.org/10.1016/j.patcog.2013.06.020


Fig. 3. Evolving recognition score for the sequence 0–2 in one-vs-one learning with sequence 0–12 being the training one. The figure presents the accuracy computed over
action's frames.

Fig. 4. Sample frames of the MSR Action3D dataset. Courtesy of Wang et al. [40].

Table 3
Comparisons of different solutions on the MSR Action3D dataset.

Methods Accuracy (%) Used primitives

Recurrent Neural Network [23] 42.50 MoCap
Dynamic Temporal Warping [25] 54 MoCap
Hidden Markov Model [21] 63 MoCap
Action Graph on Bag of 3D Points [19] 74.70 Depth Map
Mining of Actionlet ensemble [40] 88.2 MoCap
Our (one-vs-one) 63.92 MoCap
Our (full) 90.56 MoCap

Table 4
Recognition rates on all datasets compared with the best results from the other
state-of-the-art methods. Entry “–” means no result was reported by that method.

Dataset Accuracy

Our (%) Best (%)

HDM (one-vs-one) 67.89 –

HDM (multi-hypothesis) 96.67 80 [28]
CMU (one-vs-one) 86.63 –

CMU (multi-hypothesis) 90.92 75 [28]
TUM (one-vs-one) 56.82 51.41 (kNN)
TUM (multi-hypothesis) 92.56 81.50 [44]
MSR Action3D (one-vs-one) 63.92 –

MSR Action3D (multi-hypothesis) 90.56 88.20 [40]
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5 methods. Even when using the one-vs-one strategy, our method
is still competitive.

We have also summarized all results for all datasets in Table 4
to provide an overview of our method performance in comparison
with others.
Please cite this article as: M. Barnachon, et al., Ongoing human actio
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These results suggest the followings. When MoCap data (3D
skeleton) is available, our method is best suited for action
recognition. Furthermore, as our method is examplar-based, it is
preferable when we have small training sets and/or when online
and fast training is desirable.

5.3. Early recognition

As our solution has the potential to recognize actions before
their completion, we present here the obtained results for early
recognition. Fig. 5 shows the obtained recognition accuracies for
all datasets, with the usual learning and the one-vs-one learning,
where the progress of actions ranges from 50% to 100% of their
completion. For the case of TUM dataset, where actions are
complex, the recognition rate does not significantly increase after
50% of the action progress. This is mainly because most of the
discriminant information is contained in the beginning of the
action for this dataset. However, for the CMU dataset, as the
actions were longer and very different, the accuracy increases with
the action progress to confirm the recognition over time. In the
HDM dataset, where actions are short, the recognition score at 50%
of the action's progress is very high. This is a consequence of the
matching process, performed by a dynamic programming
approach, that almost perfectly match short actions, leading to
such an excellent score.

5.4. Discussion on parameters setting

Similar to other action recognition methods, our solution
depends on two important parameters, the between-pose distance
threshold ε of Eq. (1) and the number of hypotheses to be used for
an action (described in Section 4.2).
n recognition with motion capture, Pattern Recognition (2013),
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Fig. 5. Early action recognition results with the action progress ranging from 50% to 100% and a progress step of 5%.

Fig. 6. The effect of ε�distance on the number of delegates and on the recognition
time. The graph suggests that if real-time is sought, we should choose ε�distance
above 50 mm.
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The first parameter ε is a distance threshold that determines
the number of representative poses (delegates). This parameter
directly affects the computation time of the recognition process as
suggested by Fig. 6. The latter shows that our method is always
real time, except when ε takes values that are less than 1 mm.
However, 1 mm is too low for a distance threshold and yields too
many delegates, 26046 for the TUM training set for example.
Furthermore, the MoCap data metric accuracy is around a few
centimeters [36]. Hence, we have set ε to 20 mm for all our tests,
which is well above the data errors and ensures that our recogni-
tion process is always real-time. For example, with ε¼ 20 mm, we
have obtained 5799 delegates for the TUM dataset. When taking a
particular action from the latter, e.g., the sequence 0–2, made of
957 poses, the recognition process took 12.0756 s, which is less
than 1/3 of the sequence length of 39 s.

The second important parameter for our method is the number
of hypotheses per action. The distance threshold value, used to
decide whether two histograms are different, affects the number
of hypotheses to be kept for an action. We have investigated the
effect of this parameter for the case of the action “walk”, chosen
because it is a very short and variable one, with a high likelihood
of over segmentation with respect to hypotheses. We have found
that when this distance threshold is below 0.5, the number of
hypotheses remains high and constant. On the other hand, when
this threshold passes 0.5, the number of hypotheses decreases
rapidly. Hence, this threshold could be set between 0.5 and 0.9,
Please cite this article as: M. Barnachon, et al., Ongoing human actio
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depending on the desired level of granularity. In our case, we have
used 0.5 for this parameter in all our tests, to keep most of the
intra-class variations.
6. Conclusion

This paper proposed a new technique for ongoing human
action recognition. We have provided a new histogram-based
formulation for recognizing streams of poses from Motion Capture
data. The use of histograms has allowed our solution to be more
efficient, in terms of required space and computational time, than
most existing methods. Furthermore, because histogram struc-
tures are flexible, a new action can be added in a straightforward
way, by computing and updating its histogram of poses while the
action is being performed. In order to overcome the lack of
temporal information in histograms, we have proposed an exten-
sion of the classical histograms to the integral histograms. Hence,
actions can be sliced into sub-actions, represented by sub-histo-
grams, that will be compared for recognition in an incremental
way. We have used the examplar paradigm as a learning approach
that has made it possible to use very small training sets. Hence,
using a few training instances for each action, our proposed
solution was able to recognize actions in real-time. The combina-
tion of integral histograms and examplars makes it easy to extend
the training dataset, even during the recognition process. That is,
an unknown action could be easily added to the training set during
the recognition process to extend the dataset of actions with new
ones. Furthermore, by using integral histograms, we are able to
recognize actions even before they are completed. Such ongoing
recognition method opens up new possibilities for action recogni-
tion, especially in the new Human–Computer Interaction applica-
tions, where the user has the freedom to extend its application
with new gestures at runtime. The extensive tests made on
different datasets have validated our approach for classical human
actions, such as walk, run, jump, etc. in simple settings. We have
also tested our solution in more challenging settings, with the
TUM kitchen-based dataset and Microsoft MSR Action3D, in order
to show the high accuracy and discriminative efficiency of the
method. Our solution was flexible enough to cope with intra action
variations, due to body proportion differences and/or variations in
the speed of actions. This flexibility was possible thanks to the use
of dynamic alignment of sub-histograms. The obtained results
have shown that our approach yielded the best recognition rate
when compared with many well known state-of-the-art methods
n recognition with motion capture, Pattern Recognition (2013),
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on four different datasets. In particular, when 3D MoCap data are
available, our multi-hypothesis examplar-based method is preferable
over others, as it is the most accurate and most time-efficient one.
Our future work will aim at extending the proposed method to use a
more semantic approach of multi-users, reinforcing the recognition of
actions by a cross-validation of each user's recognized actions.
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